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Abstraef. The resurgence of interest in properties of molecules of icosahedral symmetry 
follows the diswvery of the Cm molecula Because of the high symmehy almost all the 
electronic and vibrational states are highly degenerate, so m dealing with properties of these 
systems their Jahn-Teller i n i d o m  must almost always be allowed for. In this p a p  we 
explore the gmund states of the G @ (s f3 h) coupling scheme and those of the WO subsystem, 
0 @I 8 and G @ h. Using a mixture of analytical and numerical methods, we map the lowest 
adiabatic potential energy surfaces of these systems. The mappings are made in such a way 
as to faciitate an analysis of the geometrical phase factor acquired by the quantal system an 
transportation round adiabatic cirmia in parameter space. These geoinetzical phase facton, or 
Berry phases, depend @aUy on the paths followed to complete these circuits. In this paper 
we introduce pmt r i za t ions  that elucidate with ease such circuits and lead to simple and 
easily accessible graphid illusmtions of the subsequently induced Berry phases. Fmally, we 
use the information provided by the Berry phase analysis to obtain the correct ordering of the 
low-lying states at strong wupling, the energies of these states and the Ham factors of the 
Jahn-Tell=-active operators wilhin these states. 

1. Jahn-Teller interactions in the icosahedral group 

Until the recent discovery of the Gw molecule [l], the icosahedral symmetry group did 
not figure largely in discussions of the Jahn-Teller effect. It was not thought until the last 
decade that molecules with this high symmetry would be found to exist. In fact the range 
of IahwTeller interactions within the diffexent irreducible representations of this gmup is 
so rich and varied that they are well worth studying and classifying even before possible 
manifestations of some of them appear in the experimental record. 

A useful paper giving much of what we need to know about the icosahedral group 
is one by Judd [Z], which gives the character tables of both the single and double 
icosahedral groups, and the breakdown of angular momentum eigenstates into their 
irreducible representations. There are five irreducible representations in the single group: 
one single& A, two triplets, TI and Tz, one quartet, G, and one quintet, H. me notation is 
rather variable in the literature, but this is what we shall use here.) Study of the products of 
representations shows that six Jahn-Teller couplings must be considered. Those involving 
only single modes are, listed in the form electronic state 63 vibrational state, TI @ h, TZ @ h, 
G@g, G@h, H@g and H@h. A survey of the continuous group invariances produced 
by involving several modes in these Jahn-Teller systems was made by Pooler [3]. The 
properties are listed below. For brevity, in all of the following we denote coupling schemes 
by just the symmetry designations with a subscript ‘eq’, for equal coupling. 
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(i) T@h. The interaction matrices in these systems are exactly the same as those coupling 
a triplet simultaneously to E -  and q-modes in cubic symmetry in the case where the two 
sets of modes combine together to act as a quintet of modes. This case, which occurs 
surprisingly often in cubic symmetry considering that it is an ‘accidental‘ degeneracy, has 
been extensively studied. The Hamiltonian has rotational symmetry in a three-dimensional 
sub-space of the five-dimensional phase space, with the result that the low-lying states are 
rather closely spaced, being pseudo-rotational. This type of coupling is the important one 
for low-lying excited states of CSO h a u s e  they are electronic triplets [4, 5, 6, 7, 81. 

(U) GO& 8 h). Because the symmetric square of G contains both G and H, the general 
Jahn-Teller system includes coupling to modes of both these types. Pooler [3] shows that 
with the strengths of coupling to both types of mode suitably adjusted the Hamiltonian is 
invariant under S0(4), so there will be a continuum of minima. Ceulemans and Fowler 191 
treated this coupling scheme, providing a general solution for the full G@(g 8 h )  system. 

(iii) GOg. Here the lowest APES has minima as well as threefold degeneracies at points 
corresponding to distortions of tetrahedral symetry, and saddle points and degeneracies at 

(iv) GBh. Here the lowest APES has ten points of minimum energy, corresponding 
to distortions of D3h symmetry, saddle points are at distortions of DB symmetry, and 
degeneracies at distortions of symmetry. Minima lie at the vertices of a dodecahedron 
embedded in the five-dimensional phase space, while the saddle points nearest in energy to 
the minima lie near the centres of the edges of the dodecahedron. 

(v) H@(g d h d h). An extra complication is introduced here because the H irreducible 
representation occurs twice in the symmetrical product HQH. As a result the Wiper-Eckart 
theorem does not take its usual simple form, and there are two families of matrices that must 
be multiplied by different coupling constants to represent a general Jahn-Teller interaction. 
The two different types of h-matrices are often distinguished by deriving one from a set 
of J = 2 states (hz) and one from a set of J = 4 states (h4). Once again, the general 
solution for the full H@(g d h d h) system was treated by Ceulemans et al [lo]. Some of 
the possible variations may be listed (vi) to (ix) below. 

(vi) H@(g@ hzCE h4). Pooler [31 shows that the Hamiltonian can have SO(5) symmetry 
if all three sets of modes are included with appropriate coupling constants. 

(vii) HO(g dh4). Here, again with appropriate coupling constants, the Hamiltonian can 
have SO(3) symmetry [3]. 

(viii) HOhz. This is the case that was considered by Khlopin et al [I I]. The symmetry 
is SO(3) [3]. The lowest APES is a four-dimensional hypersphere in the fivedimensional 
phase space, and it becomes degenerate with the next APES over a three-dimensional sub- 
space. This can be expected to lead to even higher degeneracies in the closely spaced 
low-lying levels than in T Q  h. We shall have to return to this system later. 

(ix) H@g. This has no continuous group symmetry. The lowest APES has minima and 
degeneracies at points of Ds distortion, and saddle points and degeneracies at distortions 
of tetrahedral symmetry. 

distortions Of D3h symmetry. 

We should mention here that any real cluster with this symmetry is almost bound to be 
large enough to have many different vibrations of each type; however, it is always possible 
to take a linear combination of the normal coordinates as an effective mode in such a 
way that coupling to this one mode is a best first approximation to the larger Hamiltonian 
[12, 11, 131. This is why it makes sense to work in an approximation that uses only one 
mode of each symmetry, which we shall do in what follows. 
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2. General d i d o n  and plan of the paper 

The icosahedral orbital quartet G is Jahn-Teller active under the nine normal-mode 
distortions belonging to the icosahedral representation (g 8 h). The work of Ceulemans et 
a1 [9] provides an elegant general solution for the full system G@(g 8 h) that had only 
previously been treated in part by Khlopin et a1 [ll]. Ceulemans et al [9] appealed to the 
epikemel principle [14, 151 to obtain the extremal configurations and extensive use was 
made of the finite and infinite invariances present in the G@(g @ h) problem. In this vein, 
the symmetry of the system splits naturally into three categories: the symmetries of the 
infinite SO(4) parent group, the finite icosahedral group of the Jahn-Teller origin, and the 
icosahedral subgroups resulting from the symmetry-lowering distortions. 

In the present paper we follow this h e  of attack to analyse the ground-state properties 
at strong coupling for G@(g d h )  and its two subsystems G@g and G@h. We begin in 
section 4 with a treatment of G@(g Ed h) with equal coupling, G@(g @ h)- We know from 
Pooler's work on continuous group invariances [3] that G@(g@h), has a continuous group 
invariance of SO(4). The resulting minimum-energy hypersphere in the nine-dimensional 
phase space may be conveniently parametrized in terms of spherical bihannonics [16]. This 
parametrization serves to facilitate the subsequent Beny phase [17,18] analysis, the results 
of which are used to calculate the degeneracies [19], energies and Ham factors [20, 211 of 
the low-lying states at strong coupling. In section 5 the corresponding analysis is presented 
for the subsystems G@g and G@h. In these two systems, the eigenstates in the minima of 
the corresponding lowest adiabatic potential energy sheets (called LAP= in what follows) 
no longer form a continuum but occur at discrete values of the biharmonic parameters. 
These points are related by the operations of the icosahedral subgroups resulting from the 
symmetry-lowering distortions. A duality between G@h and H@g is found to exist and we 
utilize it to obtain the ground-state properties in these two systems. Finally in section 6 
we consider the Berry phases in G@(g 8 h) at all relative coupling strengths of the g- and 
h-vibrations. 

3. The Clebseh-Gordan coupling matrices 

We begin by considering the Jahn-Teller matrix operator in the G basis. The Hamiltonian 
can be written as follows: 

where '& is the Jahn-Teller interaction, which we write in a form that shows its derivation 
from the linear term in a Taylor expansion: 

QA,A here denotes one of the nine Jahn-Teller-active coordinates, 0; is the harmonic force 
constant for the A mode, and A runs over its components. A may be G or H. Within 
the G electronic quartet the non-dynamic part of %'yields an adiabatic potential surface 
comprising four sheets &(e), 

(3) 1 2 2  4(Q) = 5 C~AC?A,A +dQ) k = 1,2, 3,4 
A, A 
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where ek(Q) is the kth root of the secular equation: 
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IWj(Q) - ~~(Q)8 i j l  = 0 
with 

(4) 

k: is the reduced matrix element for the operator of symmetry A. The Clebsch-Gordan 
coefficient (GtlAAGj), is real and it is an element of a coupling matrix that represents 
the rule for constructing a rank-two symmetric tensor transforming as [AA) from the 
components of a IG) vector. This coupling matrix is the Jahn-Teller interaction for the 
IA A) mode within the G electronic state. In aU of the following we obtain these matrices 
by a method that we have found convenient and easy to make self-consistent. The method 
involves the calculation of all possible integrals of the form (G, il QA,A~G,  j )  with the aid of 
the Mathematica package. The Jahn-Teller interaction matrices that result are given in the 
appendix in a form that also serves to define the normalization and definition of the k2s as 
we use them. The interaction matrices are, of course, determined purely by the symmetry, 
and could have been obtained by more obviously group theoretical methods, but we found 
the above method by far the quickest and most error-free. In the analysis of G@(g @ h)qr 
the basis functions used to calculate the integrals come from the irreducible representations 
[l, 01 and [Z, 01 of SO(4) (In the following we use Bidenham's [22] designation of the 
irreducible representations of S0(4).) In the cases Gag,  G@h and H@g, the basis functions 
are derived from h and g of Ib subduced from SO(3) 121. 

4. -@ewe, 

The SO(4) invariance [3] of G@(g @ h)es is a convenient starting point for our analysis. At 
equal coupling, G@(g@h) becomes [I, 01@[2,0] of SO(4). In this case the minimum-energy 
surface of the LAP= is a continuous hyperspherical trough embedded in a ninedimensional 
parameter space. The representation in electronic function space now becomes the SO(4) 
irrep [1,0] [22]. Every antipodal pair of points on the unit hyprsphere (S3) representing 
[l,  01, corresponds to the same distortion in the vibrational coordinate space. Following the 
convention of Ceulemans [23], we denote the vibrational coordinate space with the letter v 
and the projective electronic function space with f .  

4.1. The Jahn-Teller matrix for C@(g @ h) ,  

Before we go into the construction of the Jahn-Teller matrices for G@(g @ h)* let us 
first consider the task of parametrizing the SO(4) group. There are two independent 
ways of doing this, corresponding to the two independent ways of parametrizing a four- 
dimensional Euclidean space in terms of angular coordinates. Bearing in mind that we 
require a parametrization that simplifies our analysis, we choose coordinates that have been 
termed biharmonic by Barut and Rgczka [16] and utilizes 

X I  =rs in0cosu  xZ=rsinOsina 
x3 = r cos0 cos.6 x4 = r cos0 sinp 

which correspond to plane rotations in perpendicular spaces with 0 < r < 03, 0 < a, .6 < 
2n, 0 < 0 < n/2, the xi being the Cartesian coordinates in four dimensions. In tenus of 
these coordinates the basis functions of the irreducible representations of S0(4), [p. 01 with 
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Here the kets li), i = 1,2,3,4, are the G electronic unit vectors. The adiabatic potentials 
in U space are just the eigenvalues of the matrix IIMG([g @h],)II added to q2/2. In terms 
of the coordinates (q ,  0, U, p), the LAPES has the very simple form 

J P Culleme and M C M O‘Brien 

q2 - - 3qkz. 
2 

4.2. The vibronic ground stale on the ULpES. 

On the LAPES we are looking for a vibronic ground state of the form used in the adiabatic 
approximation: 

@ = r l r ( q , 0 , a r . ~ ) u ( q , e , ( ~ , ~ , ~ )  (16) 
where r represents all the electronic coordinates. Here U is the state given in equation (14). 
If we substitute this solution into the Schrodinger equation of motion on the LAPES, making 
the usual adiabatic approximation, we obtain 

(: ) (17) 
1 
2 

- - [ u V ~ @ + ~ V ~ ~ V V U + ~ V ~ U ] +  --3qkz * u = E @ u  

where V is the usual momentum operator in the coordinate representation. Applying closure 
with U to this equation yields 

1 1 
2 2 - -V2@ -V$. @[VU) - -*(uIV2u) + = E @ .  (IS) 

The components of V in the biharmonic coordinate representation are 

(19) 
a l a  1 a I a 

a q ’ q a e ’ q s i n o a ~ t  7 --) qcosea,5 . 
We may now calculate the terms in equation (18) and we obtain 

( U l V U )  = 0 (20) 
as is always the case if !U) is real and normalized. The LaplaceBeltrami operator, @, in 
terms of the bihannonic coordinates is as follows: 

The second term of equation (18) may now be calculated yielding 

Equation (18) then becomes 

where A(O, U, p )  is the angular part of the operator in (21). The LAPES here, given by 
equation (U), may be thought of as a hyperspherical ‘trough’ of radius 3kz and depth 

9(kz)2,)2/2 embedded in the ninedmensional parameter space. When the ‘trough’ is deep 
the wave function for the low-lying vibronic states will be concentrated on the hyperspherical 
continuum of minima, the distance from the next triply degenerate APES will be large 
12(kG)2, and the conditions for application of the adiabatic approximation will be satisfied. 
The appropriate concentration of wave function in the ‘trough’ occurs when we separate 
the variables and extract a radial part that is a harmonic oscillator wave function centred on 
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the minimum hypersurface at q % 3kz .  Factorizing out the q-dependence leaves us with 
an equation in 8, a and ,!? of the form 

-~ 
The Jahn-Teller effect in icosahedral symmetry 

W .  a, B ) f @ .  01, B )  + v f @ .  a. B )  = 0 (24) 
where y is a constant. This equation of motion over the minimum-energy hypersurface is 
quite straightforward to solve by first substituting periodic a- and ,!?-dependences of pericd 
2rr. Appropriate factors are of the form exp(im1a) and exp(imzp) with integral ml and 
mz. On making this substitution and setting y = l(1 + 2) we see that this equation is the 
equation discussed by Barut and Rgczka 1161 in their treatment of harmonic functions for 
S O N  [16] in the case of SO(4). The second-order ordinary differential equation resulting 
from the above manipulations is 

(25) d m; 4 - sin6 cos 8- - - - - 
d8 s i d e  cos2@ [sin ;cos 6 ddg . 

where 0!,,,,,,(8) is the $-dependence of the nuclear wave functions which may be Written 
in terms of hypergeometric functions as follows: 
@!nm (6) = tan" 6 cos' 8 

] (26) xzF1 T(lm1I - 1 +mz), -(lmll- 1 +mz); mr + 1; -tan2$ 

where I ,  ml and mz are restricted by the condition that -0&,,,,(8) is a square integrable 
function with respect to the measure sin 8 cos 8 dB da dp, i.e. 

s = 0,1, . . . , [1/2]. (27) 
These are exactly the same resfzictions as those on the indices of the spherical biharmonics 
in equation (7) with p = 1. h fact, the @!,,l,m2(e) may be expressed in terms of the 
dL,,,-functions. The orthonormal basis of the corresponding Hilbert space, H'(S3), of 
nuclear motion on or near the minimum-energy hypersurface is then given by the spherical 
hiharmonics of equation (7). These are the bases of the SO(4) irreducible representations 
[I, 01 for I = 0,1,2,-3,  . . . . The degeneracies are (I + 1)*, as can be found from the SO(3) 
subduction of these SO(4) representations. The resulting eigenvalues of equation (23) are 
then, to order ( l / k g ) z ,  

1 [' 2 

lmll+ lmzl = 1 - 2r 

This is still not the total energy, because we have left out five of the nine degrees of freedom 
in concentrating on the SO(4) subspace, but at equal coupling none of these extra degrees 
of freedom couple linearly to the electronic states, so they only contribute a zero-point 
energy of 5/2 to E. 

4.2.1. Berry phare changes mer  the .?APES. There is one final restriction that has to be 
applied to the functions in (26) before they can properly represent the nuclear wave functions 
of this problem. The total vibronic wave function is the product of a nuclear wave function 
and a vector U in f space. Physically, if we transport the system around an adiabatic 
circuit in parameter space, the total vibronic wave function must &main unchanged. The 
vector U however, suffers a Berry phase change of jz over the same circuit More precisely, 
antipodal pairs of points ((e, a, ,!?) and (6, a + x ,  ,!? + x)) in f space represent the same 
distortion in U space. Therefore, the vibronic wave function will remain unchanged only 
if the nuclear wave functions suffer the same phase change as that of the U vector. This 
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means that only the irreducible representations [I, 01 for 1 = 1,3,5, . . . of SO(4) properly 
describe the angular dependences of the nuclear wave functions. The lowest vibronic state 
has therefore a fourfold degeneracy corresponding to the nuclear motion state [l, 01. We 
thus recover the result that is characteristic of the Jahn-Teller effect; that is, when proper 
account of the Beny phase is taken, the lowest vibronic state has the same degeneracy as 
the original electronic state that couples to the vibrations. 

J P Culleme and M C M O'Brien 

4.2.2. The Ham factors within the vibronic ground state. We now proceed to calculate the 
Ham factors for the operators that transform according to [2,0] of SO(4) (i.e. g b h of the 
icosahedral group at equal coupling) withiin the vibronic ground state. A general definition 
of a Ham factor is 

where are members of the original electronic basis set, the @s are the vibronic ground 
states, and Vr is an operator transforming according to the irreducible representation r 
operating in F space. In the l i t  of strong coupling, the vibronic ground state obtained 
above may be ,witten as 

I 
(30) h= -Q(q-3k~)4(e,or,B)lu) 

4 4 7  
where Q(q - 3kg) is a normalized harmonic oscillator wave function centred at q = 3kG. 
the Q&3.a, p )  are the IGx) of equation (12) for k = 1,2 ,3 ,4 ,  and lu) is the ket given m 
equation (14). To calculate the Ham factor K(I'), we first calculate the expatation value of 
V r  within the elecrronic state ]U) and then the expectation of the resulting function within 
the nuclear wave functions a, p). For r = [2,0], our choice of V(r='=12*ol) is the 
ma& in appendix A, equation (Al), with q1 = 1 and qi = 0 with i = 2,3, . . ., although 
the calculation would of course yield the same Ham factor for any operator transforming 
as [2,01. Let this m d x  be IIcIII. Following the procedure above, the expectation of 
this ma& within !U) is cos28, and the expectation of this within the S2&3,a, ,9) is the 
4 x 4 matrix (1/3)1[c111. The Ham factor at strong coupling for the equally coupled g- and 
h-vibrations within the vibronic ground state is therefore 

I 
K([2,0]) = -. 

3 

The two Ham factors of the antisymmetric operators, TI and Tz, in this vibronic ground 
state are necessarily zero. 

5. G@g, G@h and H@g 

The topologies of the MESS for these three subsystems have already been studied in the work 
of Ceulemans et al [9, 101. However, no treatment of theBerry phase and its consequences 
on the ordering of the low-lying energy levels was done. To do this we started, following 
Khlopin et ul [ll], by using the analytic method devised by dpik and Pryce (see [24], 
equations lo), to find the extrema on the A B S .  With the aid of the Mathemtica package 
this procedure is very fast and easily implemented. 

Ceulemans [23] showed the equivalence of the Opik and Pryce method to his use of 
isostationary functions and the epikemeIprinciple [15]. In the f space representation of 
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Ggg,  the minima and saddles occur at points corresponding respectively to the maximal and 
lower ranking epikernels. The same is true of the v-space representation of this scheme. 
However, in the v representation the positions of the extrema are not projeded onto a 
unit hypersphere. In the U representation the extrema are distributed in phase space on 
concentric hyperspheres, each hypersphere Corresponding to one type of extremum. The 
angular coordinates of the extrema over these hyperspheres are the same as those of the 
f-space representation. In a similar way, we find later that G g h  and HOg share a common 
maximal epikemel symmetry for minima (see the genealogy in figure 2 of [9]).  The f 
representation of G g h  minima is therefore just a projective version of the U representation 
of H@g minima and vice versa. With this in mind, we call GOg, self-dual and GOh, dual 
to Hgg, with respect to minima. 

5.1. The bases used to calculate the coupling matrices for G@g, G g h  and H@g 

To calculate the coupling matrices for these systems we chose as far as possible to use the 
functions that were earlier used in [ l  11. The H and G bases are taken respectively from 
the J = 2 and J = 3 imps of SO(3). The functions representing the vibrational modes h 
and g have to be even and come from the SO(3) irreps J = 2 and J = 4 respectively. The 
symmehies of these bases and normal modes are listed below in Cartesian coordinates with 
the equality sign taken to mean transforms as. 

(i) Quintet modes and bases. The J = 2 irrep of the SO(3) group reduces exactly to H 
[2] .  Thus functions transforming according to H may be written exactly as a set of d states: 

(ii) Quartet modes and bases. Where an irrep of SO(3) splits into more than one irrep of 
the icosahedral group, a general method for finding the bases is to diagonalize an operator of 
icosahedral symmetry in the angular momentum eigenstates. All the necessary information 
for this is given by Judd 121. A suitable operator, in Cartesian coordinates with the fivefold 
axis along Oz, is 

Kcas = U 1 z 6  - 315r2z4 + 105r4z2 - 5r6 + 42z(xs - 10x3y2 + 5xy4). (32) 

Since we do not require that the electronic bases be even, we may take the G states that first 
appear in the J = 3 irrep of SO(3). J = 3 is shared with the Tz irrep, and diagonalizing 
vi, in J = 3 sorts out the quartet from the triplet states. This q W t  basis, which is also 
used in [ 111, is 

IG4) = x(kZ  - r2) .  

The vibrational mode symmehies, being even, are obtained from a diagonalization of Vims 
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in J = 4. The quartet modes are 
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qgl  = (x2 - y2)(xz + y2 - 6z2)  - z(3y2x - x3) 

482 = - 2 4 ~ ’  + Y’ - 62’) + z ( ~ x * Y  - y3)  

qg3 = - X z ( 3 X 2  + 3)’’ - 4Z2) 4- X4 f y4 - 6X2y2 
(34)  

qg4 = -yz(3x2 + 3y2 - 4 2 )  - 4yx(xZ - y2). 

The interaction matrices for GQg, GQh and HOg are respectively denoted II@(g)ll, 
IIMG(h)ll and IIMH(g)ll. They are obtained from the transformation properties of the 
above functions. These matrices are listed in appends A. 

5.2. The method of Opik and Pryce. 

5.2.1. GQg and GQh. In terms of our notation, this method requires us to solve the 
following set of equations in terms of llMll, one of the matrices in the preceding section, 
a, a normalized column vector of the dimension of IIMII, and (qi),  the set of normal-mode 
coordinates in IlMll. 

llMlla = Ea 

a’a = 1 
where l lM[[ is assumed to contain the reduced matrix element kn in the form given in 
appendix A. This procedure finds the eigenvector a of the Jahn-Teller matrix llMll that 
corresponds to a turning point of the appropriate APES. Below, we tabulate the results 
obtained from the 6pik and Pryce analysis on G B g  and GBh.  The results are given as 
positions on the f -space hypersphere (e, a, j3). The antipodal equivalent of (8 ,  a, j3) is at 
(0, Z, 6) where a, 6 is taken to mean (Y +T, /?+IT. The eigenstates corresponding to these 
f-space points are given by equation (14). In table 1, the columns marked E(G Q g )  and 
E(G Q h) show the energy at the particular extremum type. 

Table 1. 
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where QI is the icosahedral angle between two neighbouring fivefold axes: tanQ~ = 2; 
and QD is the dodecahedral angle between two neighbouring threefold axes: cos QD = 
(& - l ) / M ) .  In table 1, our designation of the extremum types may be related to that 
of Ceulemans et al [9] via: (I)+ y ,  (II)+ 8, @I)+ p ,  (lV)+ CY, and the numbering of 
individual extrema is as in appendix A. It should be noted that the type (III) extrema in 
G@g do not occur on the LAPES and we underline the corresponding energy to emphasize 
this. The nature of the extrema (I-N) depends on the interaction. In G@g, the maximal 
epikemels are T h ,  D3h and DSh and further analysis of the curvature at these points on the 
wE.5 shows that the stable minima occur at type (rv) points (Th). The nearest saddles 
occur at type (I) points @3h) and are on the lowest-energy paths between the type (Iv) 
minima. The idea that extrema prefer to lie on maximal epikernel points is a conclusion 
that one could have arrived at through the epikernel principle [U]. In the case of G@h, 
the positions of the stable minima once again agree with the epikemel principle [U], as 
do the other extrema In G@h, the minima are the type 0 extrema. The nearest saddles 
are the type @) extrema and are on the lowest-energy paths between the type (IQ minima. 
In table 1 we have numbered the states that correspond to stable minima so that in later 
calculations individual minima may be identified easily. 

Let us now turn our attention to the u-space representation of the distorted configurations. 
The second equation in (33, gives us the u-space coordinates of the extrema. Let us 
consider a minimum m in the coupling scheme r @ A with f-space coordinates given by 
the set of four numbers {af(m)], i = 1,2,3,4. We tabulate our u-space representations by 
constructing a matrix with elements, IlQL:',I\, given by: 

The rows of this matrix are labelled by the different minima (m) and the columns are 
labelled by the different basis distortions (qA"}. The corresponding matrices for G@g and 
G@h are then 

and they are given explicitly in appendix B. The minima (m) are as listed in table 1. 

5.2.2. H@g. The method of dpik and F'ryce is difficult to use for this case because there 
are five ai to be found, and OUT use of it did not produce any minimum points at all. It only 
produced some turning points at T h  symmetry, which turned out to be degenerate on closer 
inspection. However, a numerical search over the H@g LAPES shows that this surface has 
stable minima at points of D S h  symmetry. This is the duality mentioned earlier between 
G@h and H@g. G@h and H@g share a common maximal epikernel symmetry for minima 
@3h). so the coordinates {@(m)}, i = 1,2,3,4,5, for a minimum m in HBg, are just the 
l[Q:~cll projected onto a five-dimensional unit sphere. The llQll mahix elements for H@g 
are then 

m = l , 2  ,..., 1 0 , n = l , 2 , 3 , 4  (38) ( a I I MHk)ll )a"@) l lQ~nII  = -(aH(m))T 
aqg. 

(appendix B). In subsection 5.3 we use these matrices to obtain orthogonal transformations, 

into irreducible spaces of the icosahedral group. 
T(Th) and T@3h), that reduce the spaces Of Th (G@g) and D s h  (G@h and HQg) minima 
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5.3. The tramformations T(G) and T(D3h). 

The U representation of a Jahn-Teller system is just a state space of all possible distortions 
that may be reached by the Jahn-Teller-active coordinates. For a given coupling scheme, 
the distortion state at any point, ~ 0 ,  in v space may be represented as a linear combination 
of the basis kets of v .  The coefficients of this linear combination are just the values of the 
vibration coordinates at UO. The matrices of these coefficients for GBg, GOh and H a g  
are given in equations (37), (38) and in appendix B. First let us consider the simplest me, 
Gag.  The matrix of coefficients, IIQGtll, is a 4 x 5 matrix that describes how to consmct 
states of Th symmetry out of G basis states. This matrix, when column normalized, forms 
part of a full orthogonal transformation that transforms the static? representation of minima, 
into imps of the icosahedral group. The full orthogonal transformation is then a 5 x 5 
matrix with a 4 x 5 section containing the elements of the column-normalized llQGsll. 
The remaining 1 x 5 section is the normalized column vector, m ( l , l ,  1,1,1). This is 
the orthogonal transformation, T(Th), that reduces the space of Th minima of GOg, into 
irreducible spaces A and G of the icosahedral group. In the same way we may proceed 
to the construction of the corresponding transformation for the minima of GOh and HOg, 
T@3h). This orthogonal transformation is a 10 x 10 matrix with a 4 x 10 section containing 
the elements of the column-normalized matrix llQH811 and a 5 x 10 section containing the 
elements of the column-normalized matrix IIQGhll. The remaining 1 x 10 section is the 
normalized column vector, m ( l . 1 ,  1,1,1,1,1,1,1,1). T@sb) thus reduces the space 
of &h minima of GOh and Hag, into irreducible spaces A, G and H of the icosahedral 
group. 

5.4. The Berry phase on the LApEs and the tunnel splitting of the Jahn-Teller ground states 

Thus far we have been studying the static Jahn-Teller effect in GOg, G@h and HOg. In 
this section we look at what happens if a small amount of tunnelling is allowed for in 
the calculation of energies. The tunnelling restores the full icosahedral symmetry of the 
Jahn-Teller system and a splitting of the static ground state occurs. How the resulting split 
is ordered can be deduced from an analysis of the Berry phase on the corresponding LAPES. 

5.4.1. Numerical phase tracking. Since the Jahn-Teller matrices are being diagonalized 
numerically, the phases of the eigenvectors must also be tracked numerically. This is a little 
&icky because there is no intrinsic way of relating the phase of an eigenvector calculated 
at two neighbouring points on the LAPES. A method that we found very easy to use is 
that of adjusting the overall sign of each eigenvector so that the first component is always 
positive. This produces continuity except where the first component would naturally go 
through zero. We then plot the components of the eigenvectors and count the number of 
discontinuities which should of course occur at the same point for each component If this 
number is odd then the eigenstate will have changed sign an odd number of times implying 
an overall Beny phase change of n on completion of the adiabatic loop. Examples of this 
phase tracking for paths on the LAPES of GOh are given in figure 1. Below we treat the 
phase tracking in the three cases GOg (A), GOh (B) and HOg (C). 

t In the first instance we a~ dealing only with the static Jahn-Teller effect where we do not take into account 
Nnnelling between minima 
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Figure 1. Four plots ihat show the hacking of the four components of an electronic eigenstate 
around a closed path in U space. On this path the plots make it obvious that three sign changes 
will ensme continuily, so there is a phase change of I around the complete path. 

(A) G@g. We use the biharmonic parametrization to map out the LAPIS of G@g (see 
equations (12)): 

qgl =qsin@sina 
qg2 = q sin8 COSLY 

qg4 = q cos 8 cos j3. 

qg3 =qcosBsinj3 (39) 
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Everything can then be plotted in the sub-space q = constant. The minima all occur at 
6' = n/4,  so we take that as defining a base plane and plot (Y and ,9 along Cartesian axes 
in this plane. Because of the periodicity in a and ,9, this has the effect of plotting this 
sub-space onto a unit cell of a two-dimensional cubic lattice. This base plane also contains 
the points where the LAPES is triply degenerate. These points correspond to distortions of 
tetragonal symmetry of opposite sign to those giving minima, and on our base plane they 
appear at the face centres of the lattice of minima. To get the rest of the sub-space we 
plot 6' along the vertical axis perpendicular to the base plane. In figure 2. we plot the gap 
between the two lowest eigenvalues of llM'(g)ll across this base plane, and the minima 
and threefold-degeneracy points are clearly visible. 

,I  

Figure 2. A contou plot of the dltterence m energy between the two lowest MESS far GBg. 
The minima appear as circular wells and the threefold degeneracies as squarish peaks. 

The nature of the degeneracies is studied by taking a new origin at one of them, and 
manipulating the resulting form of llM'(g)ll to show that near the origin it has exactly the 
same form as the matrix for the Jahn-Teller interaction T@Q, so we know that four lines of 
degeneracy radiate from it towards the vertices of a tetrahedron, two above the base plane 
and two below it 1251. 

Next we turn OUT attention to the saddle points. These are all to be found at points 
with the same value of 16' - n/41, half with 6' > a/4 and half with 6' < n/4 ,and with 
values of [Y and fi that correspond to points on the base plane that are halfway between 
neighbouring minima as well as being halfway between neighbouring threefold-degeneracy 
points. Wherever a saddle point is at such a point above the base plane, there is a twofold 
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degeneracy at the mirror image point below the base plane. All these points correspond 
to distortions of the icosahedron of D3h symmeay (type (I). see table 1). These twofold 
degeneracies lie on lines of degeneracy that go from one threefold point to the next, half 
of them looping above the base plane and half of them looping below the base plane. A 
numerical scan of the difference between the two lowest eigenvalues of I lMfll across planes 
above and below the base plane picks up these lines of degeneracy again and shows where 
they go (figure 3). 

Fiyrr 3. This figure shows, schematically, the lines of degenemy above and below the plane 
B = n/4 for GQg. Cubes mark points of threefold degeneracy and dots mark pasitions of 
minima. 

Using the phase-tracking method just described, we find various adiabatic loops that 
produce Berry phase changes in the eigenvector. One set are paths that go from p = -H 
to p = H holding a constant. This type of path can be understood if we consider joining 
the two ends, which are at the same point in phase space, by rolling up the unit cell, and 
counting the number of lines of degeneracy that are enclosed by the cylinder. We should 
recall that for real states in a many-dimensional phase space, tracking the phase around a 
closed loop produces a phase change of H for every line of degeneracies that intersects 
the loop [17, 181. The two real eigenvectors of opposite sign corresponding to each of the 
minima in U space appear as a pair of antipodal eigenstates in f space. For the eigenstate 
at the ith minimum Imi) we call its antipodal equivalent ffii). The upshot of the phase 
studies is that a consistent account of the relative phases may be produced if we implement 
the following rule: As one transports an eigenstate on the GBg LAPES from the ith to j th  
to kth to . . . minima, the eigenstate passes from Imi) to Ifij) to Imk) to . . . eigenstates. 

For this case we parametrize the LAPES in terms of the coordinates 
( Q , a , y , 9 , 4 )  [261 as follows: 

qh ,  = Q(( 1/2)(3 cos2 8 - 1) cos a + (1/2)& sin2 9 sina sin 2 y )  

q h l =  Q(( 1/2)-hsin28 c o s ~ c o s a  - (1/2) sin28 cos 4 sinu cos 2y 

qh, = Q((l/2)fisinZ 9 sin 24 cosa + (1/2)(1 + cos2B) sin 26 sin a cos 2y 

qk4 = Q((l/2)-hsin2 9 cos 24 cos a + (1/2)( 1 + cos2 e )  cos 29 sina cos 2y 

qhs = Q((1/2)&sin29 sin@cosa - (1/2) sin28 sin9 sina cos2y 

(B) GOh. 

+sin8 sin4 sina sin 2 y )  

+ cos 9 cos Zq5 sin U sin 2 y )  (40) 

- cos8 sinZq5 sine sin2y) 

- sin 9 cos q5 sin U sin 2 y )  



9032 

where 0 < Q < CO, 0 < a < 7113, 0 < y c x, 0 < 0 c x / 2 ,  0 < q3 < 2n, so that all 
possible distortions in the five-dimensional phase space are covered. One may construct a 
third-order invariant [271, Z, in terms of the {qhi), as shown below; this is greatly simplified 
in terms of the above paramehization: 

J P Cullerne and M C M O'Brien 

Z = qhi(qh: - 3qh: - 3qh: + 3 -qh: + iqh,)  3 2  
2 

1 1 
+3h(qh3qhzqh5 + -qhaqh: 2 - -qhdqh:) 2 = Q'cOs3a. (41) 

Finding that a = 0 for one minimum. we use the above invariant to deduce that the a- 
value for all the minima is zero. This means that the positions of the minima only have a 
dependence on 0 ,  q3 . If we double the &range, the dependence on 8 ,  q5 is consistent with 
placing two copies of the same minima at the vertices of a dodecahedron embedded in the 
full five-dimensional parameter space. A plot of the energy of the LAPES projected onto the 
a = 0 surface is shown in figure 4. 

Fip1.r 4. A deasity ?'a* of the lowest APES for the CQh interaction projectcd onto spherical 
geometry. Dark areas indicate lower energy, black discs mark minima. Peaks in lhe energy, 
which appear white, are also degeneracies and occur at points of fivefold symmetry. 

This geometry simplifies greatly the phase tracking because immediately we have the 
proximity of minima to neighbouring minima in terms of an easily visualized structure. 
For the type (11) saddle points we find cos3a = m, and although they do not lie 
on the same a-surface as the minima, a calculation of the distances between type (11) 
extrema shows that these saddle points may be considered as occupying the centres of the 
edges of the dodecahedron. The centres of the faces of the dodecahedron in the a = 0 
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surface are twofold degeneracies on the LAPES. Tracking the phase numerically along paths 
between neighbouring minima via the saddle points between them we find that there are 
sign changes in the eigenstate corresponding to two specific types of path. First, a circuit 
around a pentagonal face of the dodecahedral surface in ( Q ,  6',4)-space results in a path 
enclosing a degeneracy (path I, figure 5(a)). Taking path I1 in figure 5(a) also induces a 
phase change of ir in the eigenstate, although it does not enclose an obvious degeneracy. A 
simple relabelling of the dodecahedron, making sure that nearest-neighbour minima remain 
the same, shows that when viewed in figure 5(b), path I1 does indeed enclose a degeneracy. 
Similarly, paths that induce sign changes but do not seem to enclose degeneracies in figure 
5(b) are seen to enclose degeneracies in figure 5(a). 

Figure 5. Mapping of the G@h minima Onto a dodecahedron. (a) The two paths s h o w  both 
induce Berry phase changes of n on the eigenstate. (b) Path I1 shown enclosing B degeneracy 
after the relabelling of the dodecahedral vertices. 

It is therefore necessary to view any circuit on the lowest APES in terms of the two 
dodecahedra in order to see whether or not a degeneracy has been enclosed. One must not 
forget that the minima lie on the vertices of a dodecahedron embedded in a four-dimensional 
surface; and the need to map the problem on the vertices of two separate dodecahedra arises 
from this. We find once again that the phase properties of the eigenstates may be correctly 
reproduced if we implement the rule introduced in (A) for transporting eigenstates around 
adiabatic loops on the G@h LAPES. 

(C) H@g. The ten equivalent minima in H@g correspond to DI distortions of the 
icosahedron. The coordinates of these points in phase space are just the rows of the matrix 
I I Q H g  I I in appendix B. Other special points on the lowest APES are as follows: A set of points 
of D3h symmetry that are not minima are degeneracies. Points in phase space corresponding 
to Th distortions are either twofold or threefold degenerate. The threefold degeneracies have 
lines of degeneracy running between them, and passing through those points of trigonal 
symmetry that are not minima. Thus the lines of degeneracy make a pattern in ( a ,  b, 01, j3)- 
space that is not unlike that of the lines of degeneracy in G@g.  These properties have also 
been established by means of various numerical scans. Phase tracking for H@g is slightly 
more complicated. We track the phase only on the paths between adjacent minima. It tums 
out that when the distances in phase space are calculated, each of the minima on the LAPES 
of H@g has six others as equally near neighbours. The phases are traced along closed paths 
going via neighbouring minima. We find that wherever such paths traverse an odd number 
of minima there is a Berry phase change of n, whereas an even number of minima gives 
no phase change. This is consistent with the rule in (A) which we also apply to this system 
to take proper account the Berry phase of the transported eigenstate. 
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5.4.2. The tunnel splitting of vibronic ground states in G@g, G@h and H@g at strong 
coupling. In the following we use a WKE approximation that allows a small amount of 
tunnelling between minima and nearest-neighbour minima only. The Jahn-Teller system is 
now dynamical, and the lowest staks, as given by this WKE approximation, will be linear 
combinations of wave functions Corresponding to ground-state harmonic oscillators (GSHO) 
in each minimum of the LApEs. These linear combinations must be invariant under the 
operations of the symmetry group of the Jahn-Teller centre. This amounts to saying that 
a translation that takes us from one minimum to another copy of itself must leave the full 
vibronic wave function invariant. Therefore, wherever this translation changes the sign 
of the electronic basis, the change of sign must be compensated for by a corresponding 
change of sign in the vibrational wave function so that the full vihronic wave function is 
unchanged. The GSHOs in the minima must therefore obey a similar rule to that imposed on 
the electronic eigenstates on transportation from minimum to minimum (see (A) of 5.4.1). 
Let the GSHO in the ith minimum be @ j  so that its antipodal equivalent be - @ j .  The full 
vibronic wave function in the ith minimum is then Oilmi) which equals - @ i l i i j ) .  This 
is the required invariance of the vibronic state under a translation from one minimum to 
another copy of itself. 

The distribution of nearest-neighbour minima for a system r@A,  may be represented in 
the form of a matrix llSrAll. the bases of which are the kets that correspond to the minima 
in U space listed as rows of the mahix lIQ'"ll (see equation (36)). IIS'""II is a matrix of 
overlaps between nearest-neighbour minima on the LAPES of r @ A. The elements IlSTIl, 
of IISrAll, are -S if minimum i and minimum j are nearest-neighbour minima and zero if 
minimum i and j are not. The negative value of the overlap is a consequence of the sign 
change of the GSHOs as one translates from minimum to minimum. As an example, let us 
consider the corresponding overlap matrix for GOg. In this case each minimum has four 
nearest neighbours so the resulting overlap matrix llSGgll will be 
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minl min2 min3 min4 mi115 q-prq min min4 3 -S -S -S -S -S -S  

(42) 

min5 -S -S -S -S 
The transformation that diagonalizes I lSGgll is then just T(Th) (defined in 5.3) which reduces 
the space of Th minima in G@g to the irreducible spaces A and G of the icosahedral group. 
The diagonalization yields a G quartet state corresponding to an overlap of +S and an 
A singlet corresponding to an overlap of -4s. Following a similar argument to that in 
[XI, the positive overlap of the quartet state implies that it has a lower energy than that of 
the singlet of overlap -4s. We deduce that the energies of these ground states at strong 
coupling are 

(43) 
E A  e (Hl1 - 4 H d / ( l  - 4s) 
EG = (If11 + I f lZ) / ( l  + s) 

where H11 is the expectation value of the Hamiltonian, H, in the GSHO at any one of the 
minima, and H ~ z  is a matrix element of If between two GsHOs in nearest-neighbour minima. 
The linear combinations of the GSHOs that correspond to the two overlap eigenvalues are 
then given by the columns of the mahix T(Th). 

The corresponding calculation for G@h and H@g involves the two matrices lisGh 11 and 
llS"gll respectively. These two matrices are constructed in the same way as IISQgll. The 
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10 x 10 matrix ((SGh(l has three off-diagonal non-zero elements in each IOW corresponding 
to an overlap of -S between nearest-neighbour minima in that case. The 10 x 10 mabix 
llSHgll has the other six off-diagonal elements in each row non-zero, corresponding to an 
overlap of -S between nearest-neighbour minima. The transformation that diagonalizes 
llSGhll and llSHgll iS then just T@3h) (defined in 5.3) which reduces the space of D a  
minima in both GOh and HQg to the irreducible spaces A, G and H of the icosahedral 
group. For GQh, the diagonalization yields a G quartet, an H quintet and an A singlet of 
states Corresponding to the overlap eigenvalues 2S, -S and -3s respectively. By the same 
argument as before [25] we deduce that in GOh the lowest-lying state is the G quartet and 
that the energies of the ground states at strong coupling are 

For HQg, the diagonalization yields an H quintet, a G quartet and an A singlet of states 
corresponding to the overlap eigenvalues 2S, -S and -6s respectively. By the same 
argument as before [25] we deduce that in HOg the lowest-lying state is the H quintet and 
that the energies of the ground states at strong coupling are 

In both G@h and HBg, the linear combinations of GsHos corresponding to the overlap 
eigenvalues are just the columns of the matrix T(D3h). 

5.4.3. Ham factors in the lowest vibronic ground states of GOg, GQh and H@g at strong 
coupling. The definition of a Ham factor is given in equation (29). Once again, let 
us begin by considering G@g. In this case we identify the operator Vg with the set of 
operators (34) for which we already know the matrices given by the matrix II@(g)ll. As 
only one component is needed, we choose the component of IIMG(g)ll with qgl = 1 and 
4gi=2,3,4 = 0, as our IlVgll. In strong coupling the vibronic states are so well localized 
on the LAPES that it is only necessary to find the expectation value of I I Vg I I at each Th 
minimum in order to find its mamx elements within the vibronic ground state. At a Th 
minimum, m, let the electronic eigenstate be Im). In the basis of Th minima listed in table 
1, the electronic expectation of I I Vg I I in the Th minima may be represented as a diagonal 
matrix llXll with elements X,, = (mlVgln)S,,, which are also the elements in the first 
column of llQGglI. For the expectation of [IVgll within the full vibronic ground states at 
strong coupling, we now require the expectation of IlXll within the vibrational ground state. 
From 5.4.2, in the basis of the Th minima listed in table 1, the vibrational ground state is 
a G quartet and is given by four of the columns of the transformation T(Th). These four 
columns form the column-normalized matrix I I QGg I I. The matrix of Vg in the vibronic 
ground state of GQg at strong coupling is then 

(46) 

where the fraction 4/45 is there because of the column-normalization. Consequently we 
have the result K(G)  = i. The two Ham factors of the antisymmetric operators, Ti and 
TI, are necessarily zero. 

4 3 
- 45 I I Q ~ ~ I I ~ I I X I I I I Q ~ ~ I I  = ; i ~ ~ v g ~ ~  
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Let us now consider a general icosahedral system r @ A. Let the icosahedral subgroup 
at the stable minima be 9. For r @ A we may again simplify greatly the mabrix algebra if 
we only consider one element of the Jahn-Teller mahix operator withiin the vibronic ground 
state. E T  transforms the static representation of r @ A minima into icosahedral irreps, and 
(a&)], (Y = 1,2,3,4 are the components of the elechonic eigenstate in the mth minimum 
then 

K ( A ) ( A L  = CTm,TmjCa,(m)ap(m)(Aa., r4rp) (47) 
m aP 

is the (i, j)th element of a A matrix operator in the r vibronic ground state. The index m 
runs through the r @ A  minima, and the index A runs through the components of the irrep 
A. By using the orthonormality relations of the Clebsch-Gordan coefficients, which is 

and by making the observation that 

T,; = - a&) E 
where lrl is the dimension of the irrep r and N is the number of minima, we obtain 

(49) 

where Z(S) is the following fourth-order invariant of the icosahedral group: 

It should be noted that to get the matrix elements {AA,rollrg) from appendiw A, 
normalization requires an extra factor of I/& for r = G and 1 / & 6  for I? = H. Using 
the relation above we calculate the Ham factors for different A operators at strong coupling 
for all the systems heated in this paper. We tabulate the results below. The two Ham 
factors of the antisymmetric operators, K(T1) and K(T2), within the above vibronic ground 
states are necessarily zero. Due to the multiplicity of H in the symmetric product H@H, 
there are two differeut Ham factors for the case A = H which must be carefully defined. 
For this reason we have put queries in table 2 and defer a discussion of these Ham factors 
to a later paper. Equation (50) is valid also for the equal-coupling case G@(g @ i ~ ) ~ ,  In 
this case we may write a similar expression to equation (47) but now the sum over minima 
(m) will be an integral over the hyperspherical trough. The resulting fourth-order invariant 
is the SO(4) invariant Z(SO(4)). The value of the invariant is 3/4 and multiplying this with 
the scaling factor 4/9 recovers the Ham factor obtained in 4.2.1 of 113. The Ham factor 
K(H)  in G@g is zero, implying that the minima in G@g remain minima even if the effects 
of h-vibrations are included. One may infer from this that the U P E S  of G@g touches the 
minimum-energy hypersurface of G@(g @ h)q at the Th minima. Thus we find that on the 
G@(g eB h)es hypersurface and at the Th minima, the splitting of the G state is the same. 
Also, the invariants Z(T,,) and Z(SO(4)) share a common value of 314. Conversely, the 
non-zero value of the K(G) in G@h, implies that states corresponding to the D3h minima 
may in general be further distorted to a lower energy by g-distortions. 
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6. The Berry phase and ground states in -@ah) at other relative couplings of g 
and h 

The LAP= of G@(g@h) has two different structures depending on which of the two modes, 
g or h, gives rise to the larger Jahn-Teller stabilization energy. A discussion on how the 
LAPES of G@(g e h )  adopts these two different structures may be found in the work of 
Ceulemans et d [9]. Here we summarize the effect of different relative couplings of the g- 
and h-modes on the ground states. 

We should first remark that if the coupling to both sets of modes is included in the 
Opik and Pryce equations (35), then the solutions are just the same as for the two modes 
separately, so a l l  the solutions are as listed in table 1. We can accordingly plot all the 
turning point energies against the relative coupling strength, as is done in figure 6. 
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Figure 6. The energies of fhe Opik and Puce tuming points in GO(g B h), showing how they 
vary with relative coupling strength. 

L o o h g  at this plot it is very obvious that only three situations arise. Whenever the g- 
coupling predominates the minima are of type (IV) and the path of lowest energy between 
them goes via the type 0 saddle points. Conversely if the h-coupling is strongest, the 
minima are of type (m) and the intermediate saddle points are of type (II). In the case 
of equal coupling all the above points coincide in energy and lie on the minimum-energy 
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hypersphere of GQ(g 8 k)q (see. section 4). For brevity we shall call this hypersphere S. 
To discuss the the complete structure of degeneracies and Berry phases over the full 

nine-dimensional phase space of GQ(g 8 h)  would be a mammoth task. Indeed, it is a 
task that we did not even complete in the four- and fivedimensional phase spaces of the 
subsystems G8g and G@h. What we did do and what is needed now is to understand how 
the phases change over the minimum-energy tunnelling paths between minima. We have 
already pointed out that at all relative coupling strengths the minima and the minimum- 
energy paths connecting them are either the same or closely related to those calculated for 
the g- and h-mode regimes separately. This means that as we move from coupling to one 
phonon type alone and increase the inRuence of the other phonon type, the topology of the 
minima, the tunnelling paths that connect them, the phases and the ground states will be 
constructed in just the same way as before. 

Take for example the case when the g-mode dominates. The five minima are of type 
(rv), with qhi = 0, i = 1,2,3,4,5, and the minimum-energy path available for tunnelling 
is via the the type (I) saddles: The difference now is that the coupling to the H modes reduces 
the energy of the saddles, but increases the length of the minimum-energy tunnelling paths. 
The path that dominates the tunnelling energy will be a compromise between these two 
effects, but as long as the old path & be continuously distorted into the new one without 
crossing a degeneracy on the LAPS, the phase relationships will be preserved. As one 
approaches G@(g 8 f ~ ) ~ ,  the coordinates of the type crv) Th minima on S remain as given 
in table 1. All these points lie on S at a &value of x/4, forming a lattice of these points 
and their antipodal equivalents on the (or, p)-surface. We find that the phase relationships 
between these points (and their antipodal equivalents) are consistent with the phase changes 
of the GQ(g '?B eigenstate (equation (14)). so we carry the argument for identifying the 
vibronic ground states through from GQg coupling, to equal GQ(g 8 h)eq coupling. 

In a similar vein we can consider what happens as one approaches GQ(g @ h)- from 
GQh. The f-space coordinates of the GQh minima are given in table 1. In this case we do 
not have the simplicity of G 8 g  where the minima remain minima even as we approach the 
equal-coupling case. In rhis case we check that as we increase the strength of g distoa.ons on 
the GBh subsystem, the points corresponding to D3h symmetry remain mutually equidistant. 
As we approach GO(g @ h)sp but with the h-mode still dominant, the tunnelling between 
the D3h points is still via the type (Ir) saddles. The coupling to the g-modes reduces the 
energy of these saddles, but increases the length of the minimum-energy tunnelling paths. 
The form of the overlap matrix between the D3h points remains unchanged until we reach 
the equal-coupling regime, so we carry the argument for identifying the vibronic ground 
states through fiom GQh coupling, to equal GQ(g fB h)s coupling. 

Using these arguments we can be reasonably sure that we know the nature of the ground 
state at strong coupling through the various changes in relative coupling strength. We can 
also assume, hy analogy with the similar, but simpler, cubic Jahn-Teller system TQ(E 8 t). 
that the Ham factors vary smoothly between the extreme values shown in table 2 via the 
equal-coupling value of 1/3. 

7. Discussion and futore work 

The strong-coupling regime of the three single-mode systems (G@g, GQh and HQg) 
discussed here have a lot in common with each other, as well as with the system T 8 r  
in the cubic group [15]. They all have the lowest APES with a number of minima, always 
corresponding to symmetric distortions of the icosahedron. The number of minima is larger 
than the degeneracy of the initial electronic state. As a result they all have groups of low- 
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lying states at strong coupling that are split in energy by tunnelling matrix elements, and 
in each case the Berry phase changes across the surface have to be tracked, so that the 
ordering in energy of these states can be given correctly, and in each case the lowest state 
belongs to the same representation as the initial electronic state. This similarity with T@r 
suggests that the optical absorption band shapes for G@g, G@h and H@g should also be 
rather involved, and we should have a look at those soon. Correspondingly. G@(g @ h) is 
comparable to the T@(r $ E )  in cubic symmetry [281. T@(r $6) also exhibits a continuous 
symmetry at equal coupling of the 5- and €-modes with preferential smchues for the LAPES 
depending on which of the two modes provides the largest Jahn-Teller srabiliization. 

The Ham factors at strong coupling discussed in this paper are all proportional to 
invariants of the icosahedral sub-groups resulting fiom the Jahn-Teller-active modes. One 
ought to be able to arrive at this result via a more direct group theoretic approach which 
we hope to develop in a later paper. 

The whole of the work in this paper has been on the strong-coupling regime, while in 
Cm in particular the Mu-Teller coupling is probably rather weak. However, previous 
experience shows that many properties such as the Ham factors can be estimated by 
interpolating between weak coupling, treated by second-order perturbation, and the sort 
of results we have here. The very high degeneracies here wiU make a numerical approach 
to the properties at intermediate coupling strengths rather difficult, but again as in T@(z$E), 
we may be able to exploit the high symmetry in the equal-couplimg case to reduce the size 
of the matrices needed for the numerical work. 

As is clear from a comparison of the introduction with the contents of this paper, there 
is still any amount of work waiting to be done on this fascinating set of problems. 

Appendix A. The JT interaction matrices for G@@@h).,, G@g and GWz 

The matrices are, for IIMG([g@hJw)lI: 

61 - f i g 6  A 9 7  -92f94 93 f9s 
f iq7  -91 +a96 9 3  -95 92+94 

-92+94 9 3  -95 91 -&q* A 9 9  
93 + 95 92 f 94 f i g 9  9l+J2q8 
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and, for IIMH(g)ll: 
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Appendix B. The matrices IIQGgll, IIQGhll and llQAgll 

The matrix for llQcgll, in units ofk:/mi,  is 

(in this matrix: row-norm = A, column-norm = m). The matrix for l l ~ ~ 1 1 ,  in units 
of k f j m ;  is 

- 
min 1 
min2 
min3 
min4 
min 5 
min 6 
min7 
min 8 
min 9 

min 10 

4hl - 
111 
PI 
Pl 
PI 
PI 

-PI 
-PI 
-111 
-P1 
-P1 

PZ 
-P6 
-P9 
-P6 

PZ 
P6 

-P4 
-PI0 
-P4 

P6 

* 
113 

-P7 
0 

P7 
-113 

P8 
-PS 

0 
PS 

-Pa 

- 4hs 
PS 
P8 
0 

-Pa 
-P5 

P7 
P3 
0 

-P3 
-P7 

where 

where x = J(6 - 1)/2 and also xz = cos(%/5) (in this matrix: row-norm = m, 
column-norm = m). The matrix for IIQHgll, in units of k f / m i  is 
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- 
min 1 
min 2 
min 3 
min4 
min5 
min 6 
min7 
min 8 
min 9 
min 10 

qg1 
a s i n 0 . h  

-a s i n 0 . 7 ~  
a s i n 0 . 5 ~  

-a sin 0 . 3 ~  
a sin 0 . 9 ~  

-bsin0.9n 
b sin0.3x 

-bsinOSa 
b s i n 0 . 7 ~  

-bsinO.lx 

a 2  
-a cos 0.1 x 
-a cos 0 . 7 ~  

0 
-a cos 0 . 3 ~  
-a cos 0.911 
-bcos0.9a 
- b c 0 ~ 0 . 3 ~  

0 
-b COS 0 . 7 ~  
-bcosO.ln 

U 3  
-b sin 0 . 3 ~  

b sin0.ln 
b sin 0 . 5 ~  
bsin0.9n 

-b sin 0 . 7 ~  
a sin 0 . 7 ~  

-a sin 0 . 9 ~  
-a sin 0 . 5 ~  
-a sin0.ln 

a sin 0 . 3 ~  

qg4 
-bCOS0.3x 
-b COS 0 . 1 ~  

0 
-bc0~0.9ir 
-b COS 0 .7~  
-a cos0.7n 
-a cosO.9x 

0 
-acosO.ln 
-a cos 0.3n 

9041 

(B3) 

References 

[I] Kroto H W, Heath I R O'Brien S C Curl R F and Smalley R E 1985 Nature 318 162-3 
[2] Judd B R 1957 Proc. R. Soc. A 241 122-31 
D] Pooler D R 1980 J. Phys. C: SolidSfate Phys. 13 1029-42 
[41 Negri F, Orlandi G and Z&etto F 1988 C k m  Phys. Lett. 144 31-7 
[SI Lannw M, B M  G A, Schliiter M and Tomanek D 1991 Phys. Rev. B 44 12 106-8 
[q de Codon V. Martins I L and Reuse F 1992 Phys. Rev. B 45 13671-5 
171 Auehach A and Manini N 1994 Phys Rev B 49 12998-3007 
[SI Auerbach A and Manini N 1994 PhysRev B 49 13008-16 
191 C e d e "  A and Fowler P W 1989 Phys. Rev. A 39 481-93 
[IO] Cedemans A and Fowler P W 1990 J. Chem. Phys. 93 1221-34 
[ll] Khlopin V P, Polinger V Z and Bersuker I B 1978 Theor. Chim Acta (Berlin) 48 87-101 
[I21 O'Brien M C M 1971 J. Phys. C: SolidStnre Phys. 4 204543 
[I31 Fletcher I R, O'Bcien M C M and EvangeLou S N 1980 J. Phys. A: Math. Gen U 2035-47 
[14] Munay-Rust P, Bum@ H B and Dunitz J D 1979 Acta Crystnllo~r. A 35 703 
[I51 Ceulemans A, Beyens D and Vanquickenboume L G 1984 J. Am Chem Soc. 106 5824-37 
[I61 BKut A 0 and M a  R 1986 Theon of Gmup Represenfolio& nnd Applications (Singapore: World 

[I71 Berry M V 1984 Pmc. R. Soc. A 392 45-57 
1181 fitchison I J R 1988 Phys. Scr. T 23 12-20 
1191 Ham F S 1987 Phys. Rev. Len. 58 725-8 
[20] Ham F S 1965 Phys. Rev. A 138 1727-39 
[21] Ham F S 1968 Phys. Rev. 166 307-21 
p2] Biedenham L C 1961 1. Math Phys. 2 433-41 
[U] Cedemans A 1987 1. Gem Phys. 87 537485 
[a] apk U and Pryce M H L 1957 Pmc. R. Soc. A 238 42547 
[U] O'Brien M C M 1989 1. Phys. A: Malh Gen 22 1779-97 
1261 O'Brien M C M 1971 1 Phys C: Solid State Phys. 4 2524-36 
[27] Golding R M 1973 Mol. Phys. 26 661472 
[28] O'Brien M C M 1969 Phys. Rev. 187 407-18 

Scientific) pp 302-7 


